- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Davide, T (1)
-
Hao, Q (1)
-
Lu, P (1)
-
Schossig, J (1)
-
Towolawi, A (1)
-
Zhang, C (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT: Ethyl cellulose (EC) is a biocompatible, renewable, and recyclable material with diverse sources, making it an attractive candidate for industrial applications. Electrospinning has gained significant attention for the production of EC fibers. However, conventional electrospinning methods face challenges such as bead formation, low yield, and the absence of porous internal structures, limiting both the functional performance and scalability. This study presents an optimized approach for producing EC fibers by using a gravity-driven ultrahigh-speed electrospinning (GUHS-ES) system. This system leverages gravity to reshape the Taylor cone morphology during electrospinning, enhancing stability and dramatically increasing throughput. As flow rates increase, the Taylor cone contracts inward, while the tip structure expands and stabilizes, reaching maximum size at ultrahigh flow rates (100−150 mL/h). This unique Taylor cone structure enables a fiber production rate of 24.5 g/h, hundreds of times greater than conventional electrospinning techniques. Another advantage of the GUHS-ES system is its ability to achieve both high diameter uniformity and adjustable porosity. At ultrahigh flow rates, the pore sizes of the EC fibers reached 321 nm. The highly porous structure of EC fibers exhibited an absorption capacity of 56.6 to 110.7 times their weight, exceeding most previously reported oil-absorbing materials and demonstrating high efficacy for rapid waste oil absorption. This green, efficient technology represents a promising advancement for the large-scale production and application of natural polymer fibers with broad implications for sustainable industrial processes.more » « lessFree, publicly-accessible full text available December 19, 2025
An official website of the United States government
